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Abstract

Even people new to the study of cryptography are likely to have some kind of awareness
that the potential rise of quantum computers poses a threat to cryptography in some sense.
However, if the author’s experience is typical, this awareness is likely to be vague. We give a
brief introduction to the topic of post-quantum cryptography, aiming to paint a clearer picture
of the situation that cryptography finds itself in. In contrast to the title (and the opinions of
the author), this article does not intend to persuade anyone of the brightness of cryptography’s
future but to simply explain the vulnerabilities and potential ways forward. This article is
also intended for students who have taken Bogdanov’s cryptography course at the Chinese
University of Hong Kong; thus certain topics have been emphasized or deemphasized in order
to avoid redundancy.

1 Introduction

While proofs of security abound in the field of cryptography, the foundations frequently lie on
unproven assumptions of computational hardness. From these foundations, security proofs take
the form of reductions, i.e. we claim that some particular protocol is secure as otherwise a
widely held assumption is false.

Of course, in some sense, this is a highly nonoptimal state of affairs. Unconditional proofs
are always superior to conditional ones. But with an understanding that sometimes we cannot
prove what we strongly believe (and the fact that applications cannot wait for these proofs to
materialize), this situation can be seen as a part of the beauty of cryptography. The field’s web
of reductions mean that all vulnerabilities can effectively be studied by considering a relatively
smaller set of problems. If decades pass without any significant progress towards contradicting
computational hardness, then confidence builds that systems whose security is based on the
assumptions will be secure.

Quantum computers are a new model of computation that challenge some of our hardness
assumptions. Luckily, cryptography’s web of reductions allows us to make precise claims about
what we do and do not know. In this article, we will describe the sources of vulnerabilities that
arise from quantum computers of sufficient size, the negative effects on classical cryptography
that such computation will bring, and some of the promising ways to proceed with cryptography.

2 Sources of vulnerabilities

Vulnerabilities to classical cryptography come from the ability of quantum computers to solve
certain problems faster than classical ones can. The extent of the speedup depends on the

∗a Mark Twain reference, because “Introduction to post-quantum cryptography” is too boring. We also do not
pretend to introduce all of the ideas, or even all of the important ones.
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particular problem. We first mention the two quantum algorithms that are by far the most
influential in motivating the need for post-quantum cryptography. Remarkably, it is feasible to
understand the cryptographic implications of these algorithms without background in how these
algorithms work. For this reason, we defer to other sources for in-depth exposition about how
these algorithms work, allowing us to focus on the implications of quantum computers without
going into quantum topics themselves.

Shor’s algorithm In 1994, Shor [18] gave a quantum algorithm for factoring integers. Shor’s
algorithm runs in time roughly quadratic in the size of the input. Specifically, to factor the
integer n (which is of input size log n), the running time is Õ(log2 n), where the Õ hides factors
that are logarithmic in log n. The best classical algorithm, the general number field sieve,

takes time 2Õ(log1/3 n). This method of Buhler, Lenstra, and Pomerance [9] builds upon work
of Pollard, which was originally used to factor Fermat numbers (of the form 22

m

+ 1 for some
integer m).

Crucially for our purposes, Shor’s algorithm can be used to solve the discrete log problem
in comparable time. 1

Grover’s algorithm Suppose that we are given oracle access to a database of size n, perhaps
that specify the values of some function f : {0, 1}logn → {0, 1}. This problem is called database
search, or simply function inverting. It should be intuitively clear that if we are promised that
some input to f results in a 1, then in the worst case, we will have to query the oracle Θ(n) times
to find an input x so that f(x) = 1. This intuition breaks down when quantum computation
is available. In 1996, Grover [11] developed a quantum algorithm for solving this problem that
takes O(

√
n) time. This result is essentially optimal in typical models2 of quantum computation

by a lower bound of Bennett, Bernstein, Brassard, and Vazirani [2].

Implications Broadly speaking, we will see that cryptosystems that can be readily attacked
by Shor’s algorithm should be considered insecure against a quantum adversary. This is due
to the subexponential speedup exhibited by Shor. (To be precise, we should say that these
systems may still be secure against a quantum computer, but only if we blow up the key sizes
exponentially to completely unrealistic lengths.) Grover’s algorithm, which demonstrates a
polynomial speedup, has less severe effects. It is generally acceptable to double key lengths to
attain the same level of security: if a classical algorithm requires 2|key| steps to break a protocol
that is based on the hardness of performing database search, then a quantum computer may
take only

√
2|key| = 2|key|/2 steps. We can return to the previous level of security by doubling

the key length.
The most crucial consideration at this point is whether any given hardness assumptions falls

victim to Shor’s algorithm. It directly follows from the fact that Shor’s algorithm can be used
to factor and solve discrete log efficiently that protocols using discrete log hardness assumptions
(such as the DDH assumption) are in trouble. This already jeopardizes a large fraction of the
protocols that we have encountered in this course3. LWE based assumptions, as introduced
by Regev [16], form the other class of hardness assumptions that we utilize frequently. In the
classical setting, the standard LWE assumption is (as is necessary for cryptographic applications)
an average case hardness assumption. This assumption is randomly self-reducible meaning that
proving its worst-case hardness is approximately equivalent to showing its average-case hardness.

1This appears to follow not in a black-box reduction from discrete log to factoring, but via knowledge of how
Shor’s algorithm works on the factoring problem.

2In addition to significantly stronger models, there is a slightly stronger model of quantum computation due to
Aaronson [1] in which this problem can be solved in O(n1/3) time.

3Not to mention RSA, which is one of the most famous public key encryption schemes.
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Then, Regev showed that worst-case LWE is at least as hard as certain lattice problems that
are conjectured hard, such as GapSVP.4 No application of Shor’s algorithm towards such lattice
problems is known as of yet, and thus protocols with hardness stemming from LWE-based
assumptions and their underlying lattice problem hardness assumptions, are secure for the time
being. Thus we see that some, but not all, of our assumptions are problematic in a post-
quantum world. We have seen many applications of LWE (which we will soon review), which
may seem to alleviate much concern about quantum algorithms. However, since LWE is still
an assumption, it is clearly preferable to develop other assumptions that are not known to be
quantum vulnerable and build more cryptography upon them. This way we are not putting all
of our eggs in a small number of baskets. To this end, we will later illuminate more hardness
assumptions that are presently in a similar condition as LWE: safe (for now) against quantum
computers.

3 Accounting for our familiar protocols

Before moving forward with new assumptions and new cryptography, let’s first consider vulner-
abilities with respect to the protocols that we have gained the most familiarity with in class.
For the purposes of this brief article, we primarily consider implications to three of the most
frequently utilized cryptographic primitives: key exchange, encryption, and signatures. We will
first handle the symmetric key setting before setting it aside, as such protocols are less affected
by quantum prospects.

Symmetric key cryptography In symmetric key settings, users Alice and Bob are as-
sumed to already hold a private key known to them; security of key exchange protocols is not
relevant here. With respect to encryption, we have already seen how to obtain an encryption
scheme assuming that pseudorandom functions exist. This assumption is weaker than the va-
lidity of the discrete log or LWE assumptions: we have seen how PRFs can be constructed via
these assumptions - and other constructions may exist even in the event that these assumptions
are unfounded. Thus, we need only have confidence in the existence of PRFs in order to have
a post-quantum secure encryption scheme, up to perhaps modest (constant factor) increases in
key length to account for any possible applications of Grover’s algorithm.

Message authentication codes are the symmetric key analog of signatures. Similarly to the
case of encryption, MACs can be constructed from solely PRFs or a combination of PRFs and
hash functions (both constructions were seen in class). Again, the existence of PRFs is a rela-
tively weak assumption, and we have seen candidate collision-resistant hash functions based on
LWE (and also on the quantum-vulnerable DDH assumption).

Public key cryptography In the public key setting, we have made extensive use of the
assumption of the computational hardness of taking discrete logarithms. The Diffie-Hellman
key exchange would likely be insecure in light of a quantum computer, although we have also
seen the Ding-Lin key exchange, which depends on a variant of the LWE assumption.5 One
of the prominent encryption schemes that we have seen, El Gamal encryption, is also discrete
log based and subject to quantum attacks. However, we did construct (in homework 2) an

4This problem is to determine whether the shortest vector in a lattice is “small” or “large”, under the promise
that the shortest vector is of magnitude at most 1 or at least β which is bounded away from 1.

5Recall that LWE postulates that the random variables (A, r) and (A,Ax + e) are indistinguishable when A
and x are random over elements of Zq and e is a vector of random noise of bounded magnitude b << q. The
shortLWE assumption is the variant where we assume indistinguishability holds even when x is taken over the
“smaller” distribution from which the error e is sampled.
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LWE-based (again, shortLWE) encryption scheme. We have seen how to apply the Fiat-Shamir
heuristic to Schnorr’s identification protocol to obtain digital signatures. However, the security
of Schnorr’s underlying identification scheme is discrete log based and the signatures are only
proven secure in the random oracle model. Additionally, we did see how to construct signatures
using just a pseudorandom generator6. This scheme was very inefficient in that it only allowed
for a single message to be signed. There are extentions to such signatures, as we will see later.
This area of “hash-based signatures” is considered appealing due to the lack of dependence on
strong assumptions and the resulting post-quantum confidence.

4 New assumptions and new protocols

Now that we know where we stand, we introduce some new cryptography that is believed to
be secure against quantum adversaries. To get a sense for which areas are most active, we take
a look at the “competition” that has been set up by the National Institute of Standards and
Technology (NIST), in the United States. The institute has solicited researchers from around
the world for submissions of protocols for key exchange, encryption, and signatures that can be
expected to be secure in a post-quantum environment. Below is a table showing the number of
submissions that they received (submissions closed in November 2017).

Key Ex./Enc Sig

lattice-based 24 4
multivariate-based 6 7
hash-based – 4
code-based 19 5
other 10 3

Table 1: Categorization of NIST submissions

We take these submissions as a guide, and discuss in varying levels of detail each of the four
areas that constitute the majority of submissions.

4.1 Lattice-based cryptography

Although lattice-based cryptography is an extremely active area, we will only briefly discuss it
so as to minimize redundancies with class material.
The definition of a lattice is very simple: it is the set of integer linear combinations of some set
of basis vectors in Rn. We briefly introduce some of the lattice based computational problems
that are considered to be hard.

Shortest vector problem (SVP) The input of this problem is the basis of some lattice
and a norm of choice (which is usually Euclidean). The problem is to find the non-zero lattice
element that has the minimum norm. This problem is only known to be NP -hard for the infinity
norm, although there are limited results for other norm choices (NP -hard for randomized or for
quasipolynomial reductions). There is also an approximation version of the problem, where one
must find a vector of norm within a fixed factor of the optimal norm.

Closest vector problem (CVP) For this problem, the input also includes a basis of a
vector space V and a vector v in V . The goal is to find a lattice element that is closest to v,
and this is NP -hard for all Lp norms.

6The construction seen in class is essentially Lamport’s one-time signature scheme.
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Gap versions The problems GapSVPβ and GapCVPβ are the relevant decision promise
problems parameterized by β > 1. For GapSVPβ , one must decide whether the shortest lattice
vector is of norm less than 1 or greater than β. GapCVPβ is defined in the obvious way and
there are a variety of hardness results depending on the asymptotics of β.

Lattices and the natural problems that result from them are very influential in cryptography.
Perhaps most notably, the LWE assumption bases its hardness on a particular instance of
GapSVP that is presumed to be hard against even a quantum adversary. There are a zoo
of lattice-based LWE assumption variants, such as ring-LWE, which is heavily used in post-
quantum key exchange protocols. Ring-LWE is a stronger assumption and some recent work
(such as [8]) addresses the problem of modifying protocols that depend on a strengthened version
of LWE so that they depend only on the standard version.
In addition, many cryptographic protocols are built directly on top of lattice problems, without
going through another assumption like LWE.

4.2 Multivariate-based cryptography

Hardness of these cryptosystems is based on solving systems of multivariate polynomial equa-
tions (this problem is known to be NP -hard and presumed hard for quantum computers).
Frequently, the polynomials are taken to be of degree at most two, and the problem of solving
systems of them are utilized towards signature schemes. We sketch a high-level example that
can be seen as a template of the 1999 “unbalanced oil and vinegar” scheme of Paturin.

In this signature scheme, the public key is a set of particularly chosen quadratic polynomi-
als f1, ..., fm over variables x1, ..., xn. To sign a message y = (y1, ..., ym), the signer sends y
and the values x1, ..., xn so that yi = fi(x1, ..., xn) for all i = 1, ...,m. The general problem is
presumed hard on average (even against a quantum adversary) when n ≈ m. The trick of these
schemes is to insert a hidden structure into the choice of the fi so that the signer can efficiently
create signatures.

4.3 Hash-based signatures

Hash-based cryptography centers around the use of hash functions to create signature schemes
based on very minimal assumptions, namely the existence of sufficiently good hashes. We have in
class already seen an example of this (although stated with respect to a PRG instead of a hash).
The example from class is typically called Lamport’s one-time signature. In this scheme, the
signer randomly picks a pair of inputs X0, X1 from the domain of a collision resistant hash func-
tion H. These values serve as the secret key. The public key is set to Y0, Y1 where Yb = H(Xb)
for b = 0, 1. To sign a single bit message b, the signer simply appends the value Xb.

Of course, this signature scheme is very limiting in that it can only be used to produce a
single signature. A trivial way to allow for multiple signatures is to generate many independent
key pairs, publish a long public key, and only use a fraction of the public key for each signature.
However, there is a way to avoid this linear (in the number of signatures) blow-up in the public
key length using something called a Merkle tree.

Suppose that the signer has a desire to sign N times where N is a power of two. The signer
can produce N key pairs for the one-time Lamport scheme and “place” these as leaf nodes in
a complete binary tree with N leaves7. Then, the hash function is applied along the edges of
the tree, so that two key pairs are hashed and this value is placed on their parent node, and so

7Note that we still have to generate many key pairs, although we will see that the single public key is shorter than
one obtains via trivial repetition.
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forth continuing until the root node is reached. The value of the root node is then published
as the public key. To sign the ith signature, the signer uses the key pair at the ith leaf to
sign a standard one-time Lamport signature. Then, the signer appends to this the necessary
hash values at intermediate nodes to allow the receiver to reconstruct the public key in his
verification phase. The use of a collision resistant has function means that someone trying to
forge a signature must be able to find inputs to H so that the result is the public key. This is a
contradiction of the properties of H.

Thus we have seen two versions of the Lamport signature: the original version and one that
allows for multiple signatures. Unfortunately, both schemes are still stateful, in that the signer
must keep track of how many signatures have been generated.

Minimality of assumptions and relevance to post-quantum cryptography
Despite that hash-based signatures date from the 1970s, their relevance is arguably increas-
ing today as the desire to develop quantum safe primitives sharpens. These signatures depend
only on the existence of sufficiently good hash functions, a relatively weak assumption con-
sidering that many of our present-day assumptions would already imply the existence of such
functions (and hashes may exist even if these assumptions fail). In fact, as long as one is ready
to presume that signature schemes exist at all, then hash-based signatures are not really an
assumption: Rompel [17] showed in 1990 that hash-based signatures are implied by the mere
existence of signatures8. Additionally, recent work has given hash-based signatures that are not
stateful. One such example is the NIST submission SPHINCS+ of Bernstein et al [7].

4.4 Code-based cryptography

We first review basic details about linear error-correcting codes and then introduce an encryption
scheme that is based on the hardness of their decoding.

Linear error-correcting codes A linear code of alphabet size q is a subspace C of Fnq .
Codewords consist of elements of this space. For our purposes, we presume that q = 2, i.e. that
we have a binary linear code. If the dimension of C is k, then there exists a set of k basis vectors
in C such that every codeword is a linear combination (or sum when q = 2) of basis vectors. In
this way, every subset of the k basis vectors yields a distinct codeword, and thus the message
space is of size 2k; the coding scheme maps messages of length k to codewords of length n. If
the distance (in the Hamming metric) of any two codewords is at least 2t + 1, then we have
that the code can correct up to t errors. We denote this as a [n, k, t]-code9. Concatenating the
k basis vectors in Fn2 forms what is a k × n generator matrix G for the code C. Codewords for
the message m may be formed by computing mG.

4.5 The McEliece encryption scheme

This scheme was introduced by McEliece in 1978 [13]. We first give the definition of the scheme
under a generic binary linear code. The scheme is then instantiated with a particular choice of
code.

Alice has an arbitrary binary linear [n, k, t] error-correcting code C with k×n generating matrix
G. The encryption scheme consists of the following three algorithms:

8In fact, he showed that the existence of one-way functions is logically equivalent to the existence of signatures in
general.

9Frequently this would be called a [n, k, 2t + 1]-code where the third parameter gives the distance between code
words instead of the correction capability.
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• Key Generation. She samples a uniformly random binary matrix S that we require to be
k × k and of full rank. She also picks a uniform n× n permutation matrix P .10 She sets
her secret key as (S,G, P ), and she computes G′ = SGP to obtain her public key (G′, t).

• Encryption. Bob has message m ∈ {0, 1}k. He treats G′ as a generating matrix for a linear
code and computes c′ = mG′. He then outputs c = c′+ z where z ∈ {0, 1}n is a uniformly
random string of Hamming weight exactly t.

• Decryption. To decrypt c received from Bob, Alice computes cP−1 and applies the decoding
algorithm for code C to it, obtaining m′. She then outputs m′S−1.

Functionality To check that Alice correctly decodes a message from Bob, we want to ensure
that m′S−1 = m. Note that Alice receives c and computes:

cP−1 = (c′ + z)P−1 = mG′P−1 + zP−1 = mSG+ zP−1

P , and thus P−1 are permutation matrices, and therefore the Hamming weight of zP−1 is the
Hamming weight of z, i.e. t. The quantity mSG+zP−1 is of the form of a codeword for message
mS under code C with at most t errors; thus the decoding algorithm returns mS as the message
associated with the noisy codeword. Alice’s multiplication by S−1 then results in m, as desired.

Instantiation As described, the McEliece encryption wraps around some choice of linear
code. While several choices have been considered, the use of Goppa codes has appeared to be
the most robust choice. The details of this coding scheme are out of the scope of this article,
but there are an abundance of resources about them [5]. Decoding proceeds by the Patterson
algorithm [15], which runs in time polynomial in n. Bernstein [6] also gives an improved decoding
algorithm.

Security Security for the McEliece scheme is conjectured due to the hardness of decoding a
general linear code, which is known to be NP -hard [4]. Thus, the reason that McEliece appears
to be secure is that it is not known how to exploit the fact that the scheme uses a randomized
Goppa code instead of using a truly random linear code. This scheme is also presumed to
be secure against quantum adversaries as no polynomial-time quantum algorithm is known for
decoding general linear codes.
Note that the scheme as presented is OW-CPA but not even semantically secure. There are
variants that exist to upgrade the security to IND-CCA2 (confer [14], [10]). Bernstein et al have
submitted a McEliece based key exchange mechanism to NIST11.

4.6 Quantum cryptography

It is common to see warnings about the conflation of post-quantum cryptography and quantum
cryptography (confer wikipedia). Granted, quantum cryptography is clearly a different animal
from the cryptography that we have been studying; its foundations lie on the physics surround-
ing quantum mechanics rather than the computational hardness of any mathematical problems.
However, this distinction means that such protocols are often information-theoretically secure.
This is the main justification we use for including a brief paragraph about it here: informa-
tion theoretic cryptographic protocols are indeed post-quantum secure - in fact they are secure
against any form of computation.

10Permutation matrices are those that have a single 1 in each row and column and 0s elsewhere. They operate on
a binary vector as a permutation.

11Their protocol actually uses something called Niederreiter encryption, which is a “dual” version of the McEliece
scheme.
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The first quantum cryptography protocol was a 1984 key exchange system of Bennett and
Brassard [3]. The unconditional security of the protocol stems from the quantum mechanical
“no cloning” theorem.

Despite this power, Mayers gave an interesting negative result in 1997 [12], namely that un-
conditionally secure quantum commitment protocols do not exist. However, there exist other
models of quantum computation that allow for quantum commitments.

5 Conclusions

Post quantum cryptography may be more familiar than the uninitiated might expect. The new
sources of vulnerabilities that quantum computers introduce are, for now, largely confined to
the effects of the algorithms of Shor and of Grover, although only the former appears to have the
potential to completely eliminate some of our classical hardness assumptions. Although Shor’s
algorithm may eventually make obsolete factoring and discrete log based protocols, the wealth of
cryptography that is LWE-based is still considered secure. Additionally to LWE, there are many
schemes that are based on other lattice assumptions, or from completely different assumptions
altogether. We have seen some of these alternate systems that are multivariate or code based.
There is also a surprising amount of cryptography that can be based on the very lightweight
assumptions of good hash functions, pseudorandom generators, and pseudorandom functions.
Quantum cryptography offers a different approach and the field reminds us that any of our
classical cryptography12 that is information theoretically secure is still intact.
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